If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+3y-30=0
a = 1; b = 3; c = -30;
Δ = b2-4ac
Δ = 32-4·1·(-30)
Δ = 129
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{129}}{2*1}=\frac{-3-\sqrt{129}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{129}}{2*1}=\frac{-3+\sqrt{129}}{2} $
| 4-(3,5x+2)=x-7 | | 3/2=k/3 | | 70x/2+25=200 | | ¹/₄(2-x)=9 | | 1+1/2=k/3 | | 3x−9=3 | | 4x+2^x-1=0.25 | | 4,5x+3x+3=380 | | 11/2=k/3 | | 5(x^2-1)=135 | | -3(4-2x)=12 | | 3X-7(2x-13)=3(-2+9) | | 4(8+2x)=-88 | | –100=10p | | 25y=44 | | 41=–4x–7 | | 4-4x=50 | | 14+b=14 | | (7^x)*(2^x)=56 | | |5f-3|=-12 | | x-x*(10/100)=500 | | –70=–10d | | 11•2-y=6 | | –1=–p2 | | 10.n=6.20 | | 75-y=28 | | 2x-4=6x–12 | | 5a+3a=3 | | 4(2x+3)=2(5x-2)=6 | | 27=4p | | 38t=19t | | 2k–7=0 |